- Is the Problem Solved?

• No conflict to declare

Outline

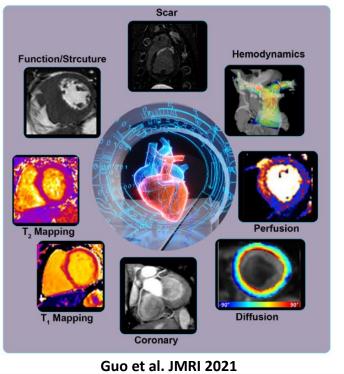
- CMR post-processing
- State of the art
- Is the problem solved?
- Where remain the problems?
- Know what you do not know

Outline

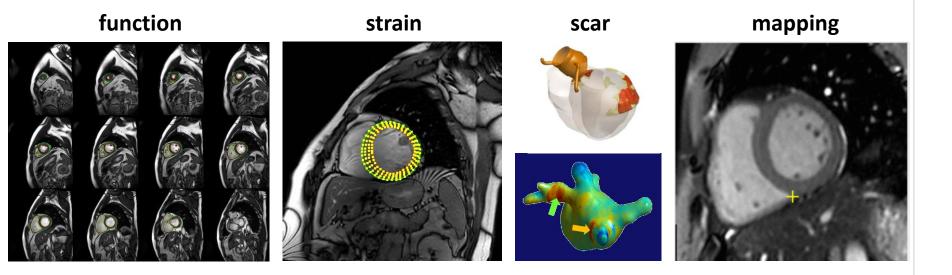
- CMR post-processing
- State of the art
- Is the problem solved?
- Where remain the problems?
- Know what you do not know

Cardiovascular Magnetic Resonance

- CMR is a highly versatile imaging modality for heart
 - Structure
 - Function
 - Mechanics
 - Tissue
 - Flow
 - • •
- Comprehensive spectrum



CMR sequences demand dedicated postprocessing



- Postprocessing of CMR used to be difficult
 - Manual:

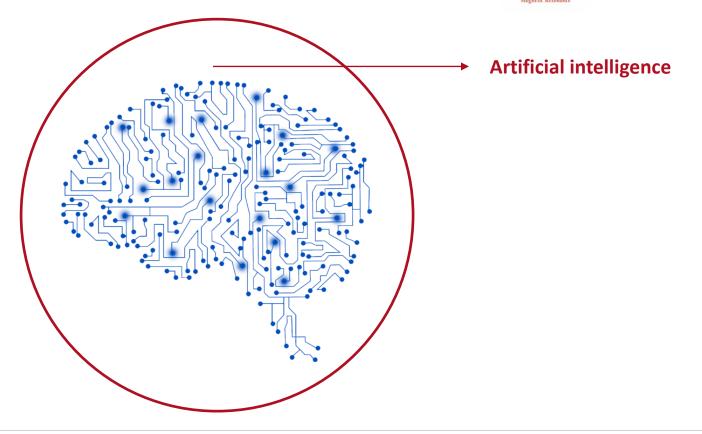
Time consuming, labor intensive

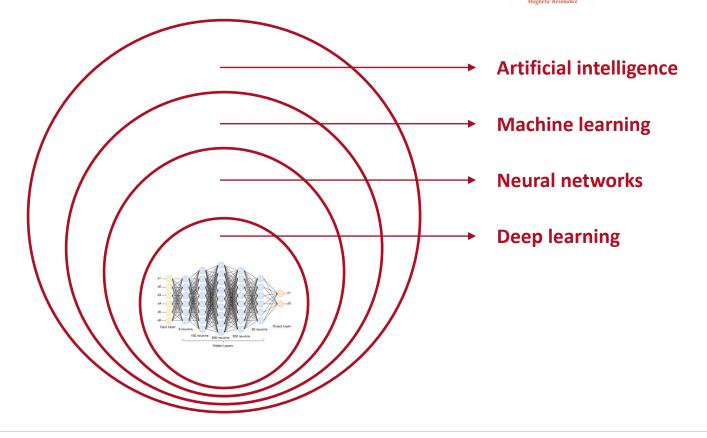
• Automatic:

Difficult to model due to the high variability of data

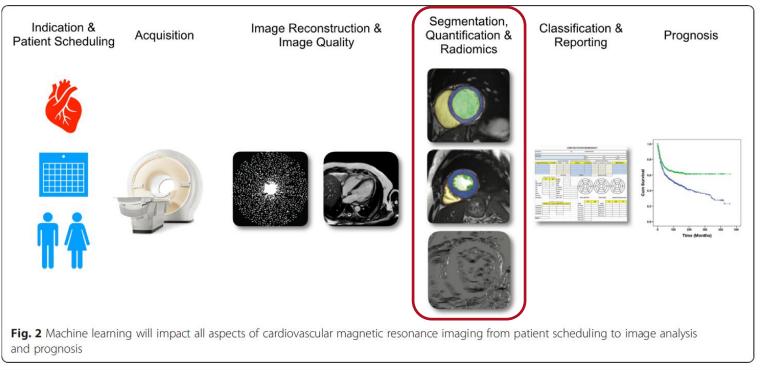
Hard to balance the bias-variance tradeoff

... before the deep learning era

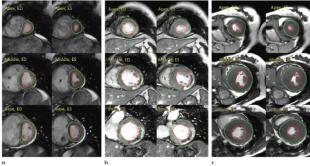




• Deep learning is creating new frontiers in CMR postprocessing



Leiner et al. JCMR 2019

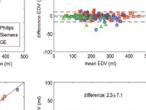


Philips Siemens A GE 100 200 300 400 500 EDV by manual segmentation (ml) r² = 0.99

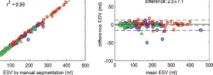
> 100 200

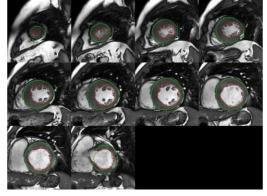
Tao et al. Radiology 2019

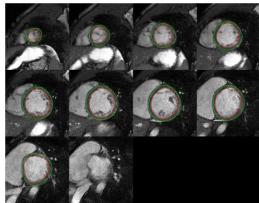
 $r^2 = 0.99$



difference: 4.0±7.0







GE Medical Systems, Waukesha, Wis) in patient with pulmonary hypertension. (b) Data set 4. Images obtained at 1.5 T (HDxt, GE Medical Systems) in patient with ischemic cardiomyopathy after intravenous administration of gadolinium chelate. (c) Data set 4. Images obtained at 3.0 T (Discovery, GE Medical Systems) in patient with hypertrophic cardiomyopathy.

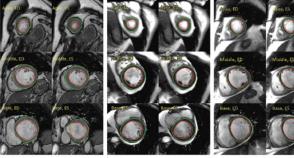
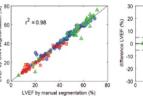
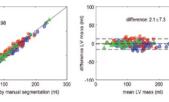
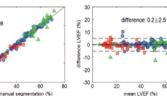


Figure 3: Examples of automated left ventricular segmentation from convolutional neural network. Apical, middle, and basal sections are shown at end-diastolic (ED) and end-systolic (ES) phases. (a) Data set 1. Images obtained at 1.5 T (Intera; Philips Medical Systems, Best, the Netherlands) in patient with ischemic cardiomyopathy. (b) Data set 2. Images obtained at 1.5 T (Ingenia, Philips) in patient with ischemic cardiomyopathy. (c) Data set 3. Images obtained at 1.5 T (Avanto; Siemens Medical Solutions, Erlangen, Germany) in patient with dilated cardiomyopathy.

 $r^2 = 0.98$ 100 300 200 LV mass by manual segmentation (ml)



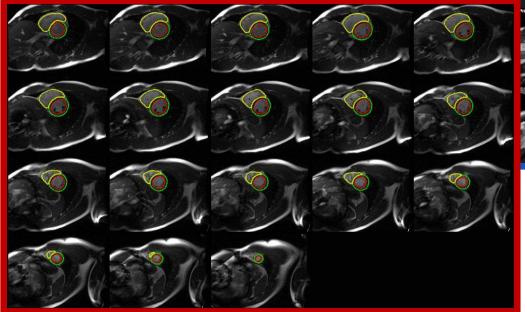


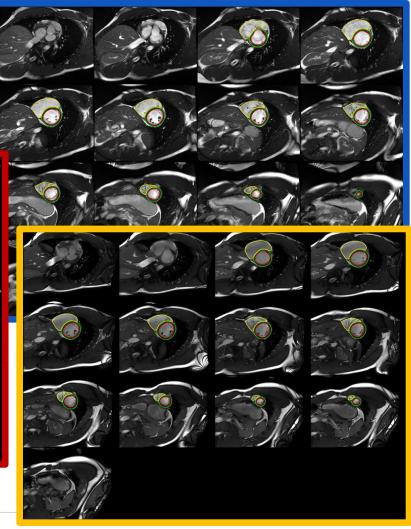


Magnetic Resonance

Figure 4: Examples of automated left ventricular segmentation from convolutional neural network. Six images are shown for each example. Apical, middle, and basal sections are shown at end-diastolic (ED) and end-systolic (ES) phases. (a) Data set 4. Image obtained at 1.5 T (HDxt;

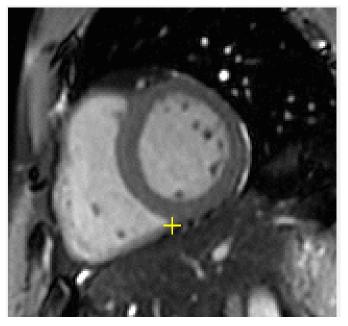
• 0.35T, 1.5T, 3.0T



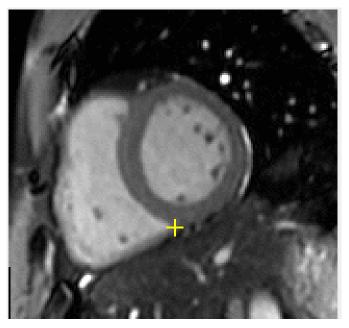


EACVI European Association of Cardiovascular Imaging

original

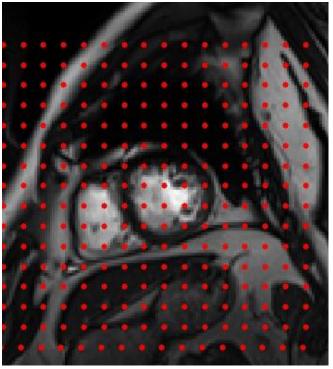


motion-corrected



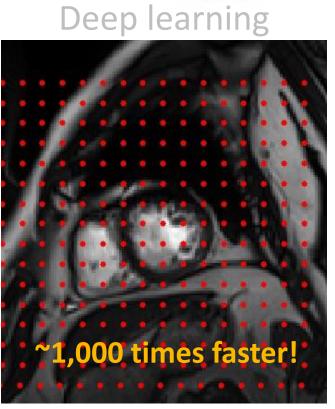
Tao Q et al. JMRI 2018

Registration

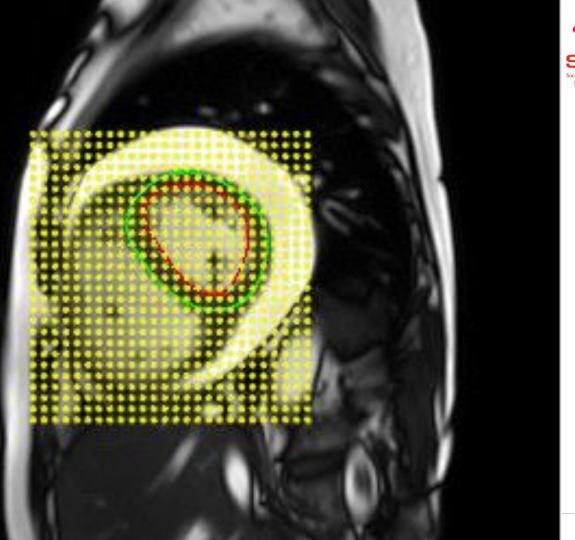


European Association of Cardiovascular Imaging

EACVI



Qiao et al. Medical Physics 2020



State of the Art

• Fruitful outcome of scientific research

Timely industrial development

Outline

- CMR post-processing
- State of the art
- Is the problem solved?
- Where remain the problems?
- Know what you do not know

UFFC

EŇB NPSS Manal Proceeding Society

2514

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 11, NOVEMBER 2018

Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?

Olivier Bernard[®], Alain Lalande, Clement Zotti[®], Frederick Cervenansky, Xin Yang, Pheng-Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, Gerard Sanroma, Sandy Napel, Steffen Petersen, Georgios Tziritas, Elias Grinias, Mahendra Khened, Varghese Alex Kollerathu, Ganapathy Krishnamurthi, Marc-Michel Rohé, Xavier Pennec, Maxime Sermesant[®], Fabian Isensee, Paul Jäger, Klaus H. Maier-Hein, Peter M. Full, Ivo Wolf, Sandy Engelhardt, Christian F. Baumgartner[®], Lisa M. Koch, Jelmer M. Wolterink[®], Ivana Išgum, Yeonggul Jang, Yoonmi Hong, Jay Patravali, Shubham Jain, Olivier Humbert, and Pierre-Marc Jodoin

• Conclusions:

- Well, almost
- Critical cases remain
 - Base
 - Apex

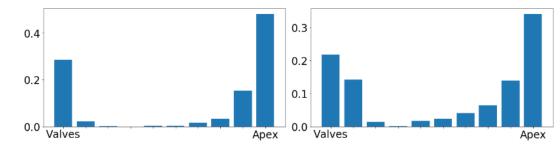


Fig. 3. Histogram of degenerated slices ED (left), and ES (right).

- RV?
- New acquisition settings with unknown distribution?

- Further improved algorithms for CMR postprocessing
 - Network architecture
 - Dataset curation
 - Augmentation

 \rightarrow Improved accuracy and generalizability

- Further improved algorithms for CMR postprocessing
 - Network architecture
 - Dataset curation
 - Augmentation

→ Improved accuracy and generalizability

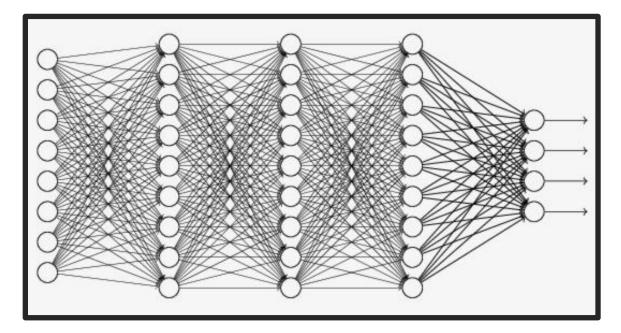
- However, "corner cases" cannot be avoided
 - Imaging parameters
 - Artefacts
 - Abnormalities

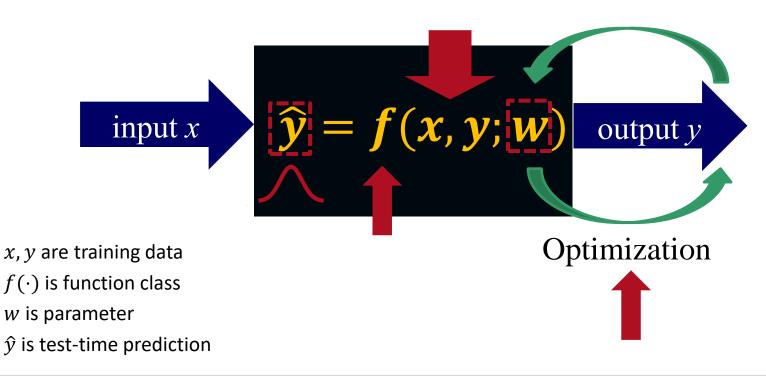
Outline

- CMR post-processing
- State of the art
- Is the problem solved?
- Where remain the problems?
- Know what you do not know

"Black Box" Deep Learning

• Difficulty to explain and control the "black box"





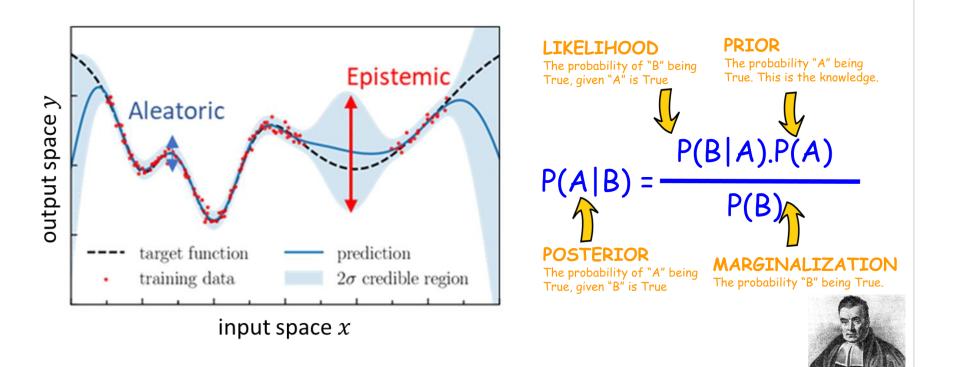
Task complexity

• Training data

• Network architecture

Optimization procedure

- Epistemic

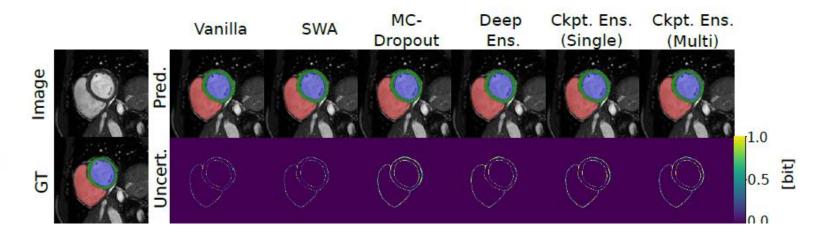


Bayesian Uncertainty

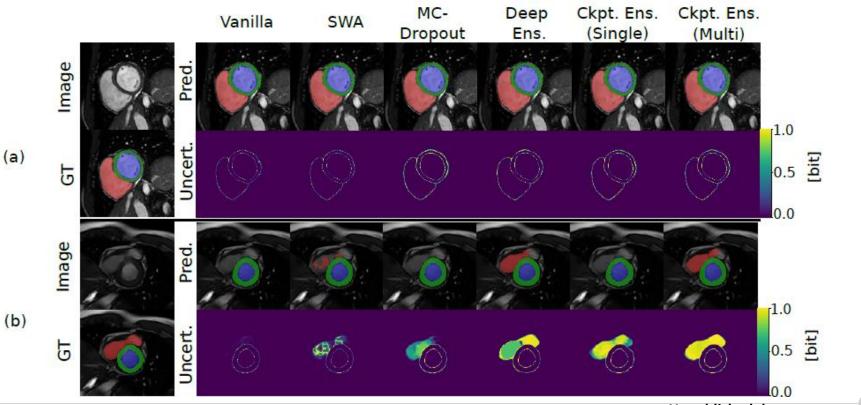
 There can be many solutions of the neural network to a curated dataset

• The optimal solution from the current dataset *D*

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathcal{D}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{w}) p(\mathbf{w}|\mathcal{D}) \, d\mathbf{w}$$



Unpublished data



Unpublished data

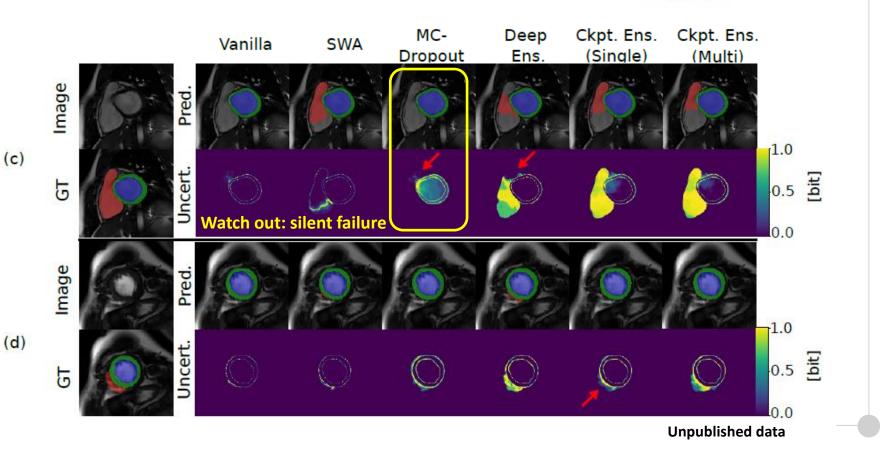


Table 1. Dice coefficients on ID and OOD test sets.

- Quantitative evaluation
- The Bayesian framework
 - Better calibration

- Improved performance
- Extends to other tasks

Method	ACDC	Validati	on (ID)	M&M	Vendor A	(OOD)	M&M V	/endor B	(OOD)
	RV	MYO	LV	RV	MYO	LV	RV	MYO	LV
Vanilla	0.911	0.904	0.944	0.830	0.810	0.897	0.878	0.844	0.894
	± 0.052	± 0.026	± 0.035	± 0.119	± 0.043	± 0.063	± 0.077	± 0.054	± 0.076
SWA	0.913	0.910	0.948	0.856	0.808	0.896	0.879	0.845	0.897
	± 0.054	± 0.023	± 0.033	± 0.093	± 0.041	± 0.061	± 0.067	± 0.050	± 0.069
MC-	0.906	0.901	0.940	0.810	0.810	0.896	0.880	0.844	0.891
Dropout	± 0.061	± 0.028	± 0.043	± 0.146	± 0.049	± 0.066	± 0.079	± 0.058	± 0.081
Deep Ens.	0.915	0.912	0.951	0.857	0.816	0.902	0.885	0.849	0.897
	± 0.051	± 0.023	± 0.029	± 0.089	± 0.041	± 0.062	± 0.068	± 0.047	± 0.064
Ckpt. Ens.	0.919	0.912	0.951	0.851	0.816	0.902	0.883	0.850	0.901
(Single)	± 0.051	± 0.022	± 0.032	± 0.100	± 0.041	± 0.061	± 0.070	± 0.048	± 0.065
Ckpt. Ens.	0.918	0.913	0.951	0.852	0.818	0.905	0.885	0.851	0.899
(Multi)	± 0.051	± 0.024	± 0.031	± 0.105	± 0.043	± 0.060	± 0.069	± 0.050	± 0.071

Table 2. ECE (%) on ID and OOD test sets.

Methods	ACDC Validation	M&M Vendor A	M&M Vendor B
	(ID)	(OOD)	(OOD)
Vanilla	2.56	4.34	3.79
Temp. Scaling	2.18	3.91	3.46
SWA	2.39	4.07	3.70
MC-Dropout	1.70	3.41	2.95
Deep Ens.	1.63	3.16	2.85
Ckpt. Ens. (Single)	1.25	2.83	2.69
Ckpt. Ens. (Multi)	1.25	2.75	2.61

SOCKATOR AND A CONTRACT OF CARCOL AND A CONTRA

- Know what you do not know
 - By analyzing the uncertainties related to the learning process

Solve the problem even better

- More accurate analysis (theoretically guaranteed)
- More reliable quality control

Conclusions

AI for CMR postprocessing is close to a "solved problem"

..., however, there are always cases where it cannot be absolutely *certain*

• In cases of *uncertainty*, let the experts know!

Acknowledgement

- TU Delft, NL
 - Yidong Zhao
 - Changchun Yang
 - Sebastian Weingartner
 - Frans Vos
- Leiden University, NL
 - Boudewijn Lelieveldt
 - Rob van der Geest
 - Hildo Lamb
 - Albert de Roos
 - Katja Zeppenfeld

EACVI European Association of Cardiovascular Imaging

• OSU, USA

- Juliet Varghese
- Yuchi Han
- Orlando Simonetti
- Tongji Hospital, CN
 - Lu Huang
 - Liming Xia

Thank you

<u>q.tao@tudelft.nl</u>